Prostaglandin E receptors and the kidney.

نویسندگان

  • M D Breyer
  • R M Breyer
چکیده

Prostaglandin E(2) is a major renal cyclooxygenase metabolite of arachidonate and interacts with four G protein-coupled E-prostanoid receptors designated EP(1), EP(2), EP(3), and EP(4). Through these receptors, PGE(2) modulates renal hemodynamics and salt and water excretion. The intrarenal distribution and function of EP receptors have been partially characterized, and each receptor has a distinct role. EP(1) expression predominates in the collecting duct where it inhibits Na(+) absorption, contributing to natriuresis. The EP(2) receptor regulates vascular reactivity, and EP(2) receptor-knockout mice have salt-sensitive hypertension. The EP(3) receptor is also expressed in vessels as well as in the thick ascending limb and collecting duct, where it antagonizes vasopressin-stimulated salt and water transport. EP(4) mRNA is expressed in the glomerulus and collecting duct and may regulate glomerular tone and renal renin release. The capacity of PGE(2) to bidirectionally modulate vascular tone and epithelial transport via constrictor EP(1) and EP(3) receptors vs. dilator EP(2) and EP(4) receptors allows PGE(2) to serve as a buffer, preventing excessive responses to physiological perturbations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of sodium hydrosulfide on mRNA expression of prostaglandin E2 receptors in response to mucosal acidification and distention-induced gastric acid secretion in rats

Objective(s): Prostaglandins have been shown to mediate the gastro-protective effect of sodium hydrosulfide (NaHS) but effect of NaHS on mRNA expression of prostaglandin E2 receptors (EP1, 3-4; EPs) has not been investigated. Therefore, this study designed to evaluate the effect of NaHS on mRNA expression of EPs receptors in response to mucosal acidification and distention-induced gastric acid ...

متن کامل

Cycloxygenase-2 is expressed in vasculature of normal and ischemic adult human kidney and is colocalized with vascular prostaglandin E2 EP4 receptors.

The study was performed to elucidate the distribution and cellular localization of cyclooxygenase (COX)-2 in human kidney and to address localization of downstream targets for COX-derived prostanoids. Cortex and outer and inner medulla tissue were obtained from control kidneys (cancer specimens), kidneys with arterial stenosis, and kidneys of patients who received angiotensin II inhibition or a...

متن کامل

Prostaglandin signaling regulates nephron segment patterning of renal progenitors during zebrafish kidney development

Kidney formation involves patterning events that induce renal progenitors to form nephrons with an intricate composition of multiple segments. Here, we performed a chemical genetic screen using zebrafish and discovered that prostaglandins, lipid mediators involved in many physiological functions, influenced pronephros segmentation. Modulating levels of prostaglandin E2 (PGE2) or PGB2 restricted...

متن کامل

Prostanoid biosynthesis and mechanisms of action.

Prostanoids are local hormones formed from arachidonic acid that coordinate responses to circulating hormones which elicit prostanoid synthesis. For example, in the kidney, prostaglandin (PG) E2 synthesized by collecting tubule epithelia in response to arginine vasopressin (AVP) acts on the parent collecting tubule as well as the neighboring thick limb to modulate NaCl and water reabsorption oc...

متن کامل

Antihypertensive effects of some new nitroxyalkyl 1,4-dihydropyridine derivatives in rat model of two-kidney, one-clip hypertension

Dihydropyridine calcium channel blockers consist one of the widely-used groups of drugs for the management of hypertension. In this study, antihypertensive effects of 5 newly synthesized derivatives of DHP was examined the in rat model of two-kidney, one-clip renal hypertension. The results showed that those compounds containing two nitroxy groups had less decreasing effect on MAP (Men Arterial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 279 1  شماره 

صفحات  -

تاریخ انتشار 2000